Graphs of order two less than the Moore bound
نویسندگان
چکیده
The problem of determining the largest order nd,k of a graph of maximum degree at most d and diameter at most k is well known as the degree/diameter problem. It is known that nd,k Md,k where Md,k is the Moore bound. For d = 4, the current best upper bound for n4,k is M4,k − 1. In this paper we study properties of graphs of order Md,k − 2 and we give a new upper bound for n4,k for k 3. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
On Mixed Almost Moore Graphs of Diameter Two
Mixed almost Moore graphs appear in the context of the Degree/Diameter problem as a class of extremal mixed graphs, in the sense that their order is one less than the Moore bound for mixed graphs. The problem of their existence has been considered before for directed graphs and undirected ones, but not for the mixed case, which is a kind of generalization. In this paper we give some necessary c...
متن کاملNon-existence of bipartite graphs of diameter at least 4 and defect 2
The Moore bipartite bound represents an upper bound on the order of a bipartite graph of maximum degree ∆ and diameterD. Bipartite graphs of maximum degree ∆, diameterD and order equal to the Moore bipartite bound are called Moore bipartite graphs. Such bipartite graphs exist only if D = 2, 3, 4 and 6, and for D = 3, 4, 6, they have been constructed only for those values of ∆ such that ∆− 1 is ...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملAn Efficient Schulz-type Method to Compute the Moore-Penrose Inverse
A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.
متن کاملRegular digraphs of diameter 2 and maximum order
It is known that Moore digraphs of degree d > 1 and diameter k > 1 do not exist (see [16] or [4]). For degree 2, it has been shown that for diameter k ~ 3 there are no digraphs of order 'close' to, i.e., one less than, the Moore bound (14). For diameter 2, it is known that digraphs close to Moore bound exist for any degree because the line digraphs of complete digraphs are an example of such di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008